Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717677

RESUMEN

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Asunto(s)
Neoplasias Asociadas a Colitis , Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , Humanos , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/etiología , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Animales , Colitis/complicaciones , Colitis/inmunología
2.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720342

RESUMEN

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Células Supresoras de Origen Mieloide/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Animales , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología
3.
Front Immunol ; 15: 1390327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742106

RESUMEN

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Asunto(s)
Biomarcadores , Células Supresoras de Origen Mieloide , Derrame Pleural , Tuberculosis Pulmonar , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Masculino , Femenino , Derrame Pleural/inmunología , Derrame Pleural/diagnóstico , Persona de Mediana Edad , Diagnóstico Diferencial , Adulto , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/inmunología , Anciano , Neumonía/diagnóstico , Neumonía/inmunología , Estudios Prospectivos , Tuberculosis Pleural/diagnóstico , Tuberculosis Pleural/inmunología
4.
Exp Hematol ; 129: 104125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38743005

RESUMEN

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Asunto(s)
Linfoma de Células B Grandes Difuso , Células Supresoras de Origen Mieloide , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Células Supresoras de Origen Mieloide/metabolismo , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/sangre , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Inflamación/patología , Adulto , Estudios Prospectivos , Anciano de 80 o más Años , Citocinas/sangre , Inmunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
5.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745150

RESUMEN

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Asunto(s)
Antígeno CD11b , Cirrosis Hepática , Regeneración Hepática , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Regeneración Hepática/fisiología , Antígeno CD11b/metabolismo , Masculino , Modelos Animales de Enfermedad , Hígado/patología , Hígado/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Concanavalina A , Ligadura , Lipopolisacáridos , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Estrelladas Hepáticas/metabolismo , Técnicas de Cocultivo , Hepatocitos/metabolismo , Hepatocitos/patología , Conductos Biliares
6.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703051

RESUMEN

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos Intraepiteliales/inmunología , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/patología , Tolerancia Inmunológica , Animales , Macrófagos Asociados a Tumores/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Células Mieloides/inmunología
7.
Front Immunol ; 15: 1352821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711517

RESUMEN

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Asunto(s)
Modelos Animales de Enfermedad , Electroporación , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Ratones , Línea Celular Tumoral , Células Supresoras de Origen Mieloide/inmunología , Ratones Endogámicos C57BL , Humanos , Linfocitos T Reguladores/inmunología , Femenino
8.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663936

RESUMEN

RATIONALE: Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS: 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS: ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION: The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Animales , Masculino , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radiofármacos/uso terapéutico , Radiofármacos/farmacología , Humanos , Línea Celular Tumoral , Radioisótopos de Itrio/uso terapéutico , Radioisótopos de Itrio/farmacología , Modelos Animales de Enfermedad , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Andrógenos/farmacología , Terapia Combinada
9.
Cancer Res Commun ; 4(4): 1135-1149, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598844

RESUMEN

Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE: Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.


Asunto(s)
Células Supresoras de Origen Mieloide , NADPH Oxidasa 2 , Neoplasias Pancreáticas , Especies Reactivas de Oxígeno , Femenino , Humanos , Masculino , Carcinoma Ductal Pancreático/cirugía , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Periodo Posoperatorio , Especies Reactivas de Oxígeno/metabolismo
10.
Int J Cancer ; 155(2): 352-364, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38483404

RESUMEN

Treatment for higher-risk non-muscle invasive bladder cancer (NMIBC) involves intravesical immunotherapy with Bacillus Calmette Guérin (BCG); however, disease recurrence and progression occur frequently. Systemic immunity is critical for successful cancer immunotherapy; thus, recurrence of NMIBC may be due to suboptimal systemic activation of anti-tumor immunity after local immunotherapy. We previously reported that systemically acquired trained immunity (a form of innate immune memory) in circulating monocytes is associated with increased time-to-recurrence in patients with NMIBC treated with BCG. Herein, we used a mouse model of NMIBC to compare the effects of intravesical versus intravenous (systemic) BCG immunotherapy on the local and peripheral immune microenvironments. We also assessed whether BCG-induced trained immunity modulates anti-tumor immune responses. Compared with intravesical BCG, which led to a tumor-promoting immune microenvironment, intravenous BCG resulted in an anti-tumoral bladder microenvironment characterized by increased proportions of cytotoxic T lymphocytes (CTLs), and decreased proportions of myeloid-derived suppressor cells. Polarization toward anti-tumoral immunity occurred in draining lymph nodes, spleen, and bone marrow following intravenous versus intravesical BCG treatment. Pre-treatment with intravesical BCG was associated with increased rate of tumor growth compared with intravenous BCG pre-treatment. Trained immunity contributed to remodeling of the tumor immune microenvironment, as co-instillation of BCG-trained macrophages with ovalbumin-expressing bladder tumor cells increased the proportion of tumor-specific CTLs. Furthermore, BCG-trained dendritic cells exhibited enhanced antigen uptake and presentation and promoted CTL proliferation. Our data support the concept that systemic immune activation promotes anti-tumor responses, and that BCG-induced trained immunity is important in driving anti-tumor adaptive immunity.


Asunto(s)
Vacuna BCG , Inmunoterapia , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Microambiente Tumoral/inmunología , Ratones , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Vacuna BCG/uso terapéutico , Inmunoterapia/métodos , Femenino , Administración Intravesical , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/inmunología , Humanos , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Línea Celular Tumoral , Memoria Inmunológica/inmunología , Células Supresoras de Origen Mieloide/inmunología , Inmunidad Entrenada
11.
Exp Eye Res ; 242: 109871, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527580

RESUMEN

Myeloid derived suppressor cells (MDSCs) are a heterogenous population of immature hematopoietic precursors with known immunoregulatory functions. The immunosuppressive role of MDSCs has been highlighted in several inflammatory ophthalmic disorders; however, their therapeutic application in suppressing the immune-mediated changes in dry eye disease (DED) has not been studied. We observed significant reduction in antigen presenting cell (APC) frequencies and their maturation in the presence of MDSCs. Moreover, co-culturing MDSCs with T helper 17 cells (Th17) resulted in reduced Th17 frequencies and their IL-17 expression. On the contrary, MDSCs maintained regulatory T cell frequencies and enhanced their function in-vitro. Furthermore, we delineated the role of interleukin-10 (IL-10) secreted by MDSCs in their immunoregulatory functions. We confirmed these results by flow cytometry analysis and observed that treatment with MDSCs in DED mice effectively suppressed the maturation of APCs, pathogenic Th17 response, and maintained Treg function and significantly ameliorated the disease. The results in this study highlight the potential therapeutic application of MDSCs in treating refractory DED.


Asunto(s)
Modelos Animales de Enfermedad , Síndromes de Ojo Seco , Citometría de Flujo , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Linfocitos T Reguladores , Células Th17 , Animales , Células Supresoras de Origen Mieloide/inmunología , Síndromes de Ojo Seco/inmunología , Síndromes de Ojo Seco/metabolismo , Ratones , Células Th17/inmunología , Linfocitos T Reguladores/inmunología , Células Presentadoras de Antígenos/inmunología , Femenino , Progresión de la Enfermedad , Interleucina-10/metabolismo , Células Cultivadas , Técnicas de Cocultivo
12.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547770

RESUMEN

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Indoles , Interleucina-1beta , Neoplasias de la Boca , Microambiente Tumoral , Animales , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Interleucina-1beta/metabolismo , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Progresión de la Enfermedad , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Masculino , Tubulina (Proteína)/metabolismo , Lipopolisacáridos
13.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427437

RESUMEN

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Asunto(s)
Antígeno B7-H1 , Células Supresoras de Origen Mieloide , Animales , Antígeno B7-H1/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Metástasis de la Neoplasia , Línea Celular Tumoral , Femenino , Modelos Animales de Enfermedad , Quimiocina CXCL10/metabolismo
14.
Cell Mol Immunol ; 21(5): 495-509, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448555

RESUMEN

The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.


Asunto(s)
Quimiocina CCL2 , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Polisacáridos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Polisacáridos/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Quimiocina CCL2/metabolismo , Ratones , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ácido N-Acetilneuramínico/metabolismo
15.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38393969

RESUMEN

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Asunto(s)
Antígenos CD , Receptor Leucocitario Tipo Inmunoglobulina B1 , Glicoproteínas de Membrana , Células Mieloides , Receptores Inmunológicos , Microambiente Tumoral , Receptores Inmunológicos/metabolismo , Animales , Humanos , Ratones , Microambiente Tumoral/inmunología , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo
16.
J Leukoc Biol ; 115(5): 958-984, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38236200

RESUMEN

Myeloid-derived suppressor cells are heterogenous immature myeloid lineage cells that can differentiate into neutrophils, monocytes, and dendritic cells as well. These cells have been characterized to have potent immunosuppressive capacity in neoplasia and a neoplastic chronic inflammatory microenvironment. Increased accumulation of myeloid-derived suppressor cells was reported with poor clinical outcomes in patients. They support neoplastic progression by abrogating antitumor immunity through inhibition of lymphocyte functions and directly by facilitating tumor development. Yet the shifting genetic signatures of this myeloid lineage cell toward immunosuppressive functionality in progressive tumor development remain elusive. We have attempted to identify the gene expression profile using lineage-specific markers of these unique myeloid lineage cells in a tumor microenvironment and bone marrow using a liquid transplantable mice tumor model to trace the changing influence of the tumor microenvironment on myeloid-derived suppressor cells. We analyzed the phenotype, functional shift, suppressive activity, differentiation status, and microarray-based gene expression profile of CD11b+Gr1+ lineage-specific cells isolated from the tumor microenvironment and bone marrow of 4 stages of tumor-bearing mice and compared them with control counterparts. Our analysis of differentially expressed genes of myeloid-derived suppressor cells isolated from bone marrow and the tumor microenvironment reveals unique gene expression patterns in the bone marrow and tumor microenvironment-derived myeloid-derived suppressor cells. It also suggests T-cell suppressive activity of myeloid-derived suppressor cells progressively increases toward the mid-to-late phase of the tumor and a significant differentiation bias of tumor site myeloid-derived suppressor cells toward macrophages, even in the presence of differentiating agents, indicating potential molecular characteristics of myeloid-derived suppressor cells in different stages of the tumor that can emerge as an intervention target.


Asunto(s)
Diferenciación Celular , Progresión de la Enfermedad , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Animales , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Microambiente Tumoral/inmunología , Ratones , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Células de la Médula Ósea/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Médula Ósea/patología , Médula Ósea/metabolismo
17.
J Biol Chem ; 299(11): 105276, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739035

RESUMEN

Imbalanced immune responses are a prominent hallmark of cancer and autoimmunity. Myeloid cells can be overly suppressive, inhibiting protective immune responses or inactive not controlling autoreactive immune cells. Understanding the mechanisms that induce suppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tolerogenic dendritic cells (TolDCs), can facilitate the development of immune-restoring therapeutic approaches. MDSCs are a major barrier for effective cancer immunotherapy by suppressing antitumor immune responses in cancer patients. TolDCs are administered to patients to promote immune tolerance with the intent to control autoimmune disease. Here, we investigated the development and suppressive/tolerogenic activity of human MDSCs and TolDCs to gain insight into signaling pathways that drive immunosuppression in these different myeloid subsets. Moreover, monocyte-derived MDSCs (M-MDSCs) generated in vitro were compared to M-MDSCs isolated from head-and-neck squamous cell carcinoma patients. PI3K-AKT signaling was identified as being crucial for the induction of human M-MDSCs. PI3K inhibition prevented the downregulation of HLA-DR and the upregulation of reactive oxygen species and MerTK. In addition, we show that the suppressive activity of dexamethasone-induced TolDCs is induced by ß-catenin-dependent Wnt signaling. The identification of PI3K-AKT and Wnt signal transduction pathways as respective inducers of the immunomodulatory capacity of M-MDSCs and TolDCs provides opportunities to overcome suppressive myeloid cells in cancer patients and optimize therapeutic application of TolDCs. Lastly, the observed similarities between generated- and patient-derived M-MDSCs support the use of in vitro-generated M-MDSCs as powerful model to investigate the functionality of human MDSCs.


Asunto(s)
Células Dendríticas , Células Supresoras de Origen Mieloide , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Vía de Señalización Wnt , Humanos , Células Dendríticas/inmunología , Inmunomodulación/inmunología , Inmunoterapia , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/inmunología , Vía de Señalización Wnt/inmunología , Células Tumorales Cultivadas
18.
Nature ; 621(7980): 830-839, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674079

RESUMEN

The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Neutrófilos , Receptores Inmunológicos , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Progresión de la Enfermedad , Edición Génica , Inmunoterapia , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Neoplasias/inmunología , Neoplasias/patología , Neutrófilos/inmunología , Neutrófilos/patología , Receptores Inmunológicos/inmunología , Análisis de Supervivencia , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/patología , Microambiente Tumoral , Activación de Linfocitos
19.
Cell Rep ; 42(8): 113006, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37610870

RESUMEN

Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis. Treatment of myeloid precursors with S100-alarmins during differentiation induces MDSCs in a Toll-like receptor 4-dependent manner. Consequently, knockout of S100A8/A9 aggravates disease activity in collagen-induced arthritis due to a deficit of MDSCs in local lymph nodes, which could be corrected by adoptive transfer of S100-induced MDSCs. Blockade of MDSC function in vivo aggravates disease severity in arthritis. Therapeutic application of S100A8 induces MDSCs in vivo and suppresses the inflammatory phenotype of S100A9ko mice. Accordingly, the interplay of T cell-mediated autoimmunity with a defective innate immune regulation is crucial for autoimmune arthritis, which should be considered for future innovative therapeutic options.


Asunto(s)
Artritis , Calgranulina A , Calgranulina B , Células Supresoras de Origen Mieloide , Animales , Ratones , Artritis/inmunología , Artritis/metabolismo , Artritis/patología , Linfocitos T/citología , Linfocitos T/inmunología , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/inmunología , Modelos Animales de Enfermedad , Diferenciación Celular , Óxido Nítrico/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
20.
Int Immunopharmacol ; 122: 110586, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393838

RESUMEN

The tumor immune microenvironment (TIME) is a dynamic and complex ecosystem consisting of immune cells, stromal cells, and tumor cells. It plays a crucial role in shaping cancer progression and treatment outcomes. Notably, tumor-associated immune cells are key regulators within the TIME, influencing immune responses and therapeutic efficacy. The Hippo pathway is a critical signaling pathway involved in the TIME and cancer progression. In this review, we provide an overview of the Hippo pathway's role in the TIME, focusing on its interactions with immune cells and their implications in cancer biology and therapy. Specifically, we discuss the involvement of the Hippo pathway in regulating T-cell function, macrophage polarization, B-cell differentiation, MDSC activity, and dendritic cell-mediated immune responses. Furthermore, we explore its influence on PD-L1 expression in lymphocytes and its potential as a therapeutic target. While recent progress has been made in understanding the Hippo pathway's molecular mechanisms, challenges remain in deciphering its context-dependent effects in different cancers and identifying predictive biomarkers for targeted therapies. By elucidating the intricate crosstalk between the Hippo pathway and the TME, we aim to contribute to the development of innovative strategies for cancer treatment.


Asunto(s)
Vía de Señalización Hippo , Inmunoterapia , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Vía de Señalización Hippo/inmunología , Polaridad Celular , Células Supresoras de Origen Mieloide/inmunología , Humanos , Macrófagos Asociados a Tumores/inmunología , Linfocitos Infiltrantes de Tumor/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA